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The diffraction of plane elastic waves by smooth convex cylinders is studied. The dif- 

fraction of longitudinal and transverse plane waves by a circular stress-free cylinder is 

considered in Sections l-7. The solotion of similar problems is given in series form in 

[I]. However, rapid convergenceof these series only occurs in the case when the diameter 

of the cylinder o is small compared with the wavelength o << 2n/k. We shall concern onr- 

selves with the high-frequency case, i.e ., when k,o >> 1 and k,a >> 1. In [2,3] a quite gen- 

eral method of solution is proposed for the problem of scattering of high-frequency elastic 

waves by curved surfaces. However, the phenomena which occur are studied (in accordance 

with Kirchhoff s principle) only in the ‘illuminated’ region. The diffraction of longitadinal 

elastic waves emanating from a line source by a rigid cylinder is studied in [4] using a 

double Laplace transformation in time and angle. The solntion is found in the illuminated 

region and in the shadow for the first arrival of the waves. 

In this paper a method is used which was first proposed by Watson [s] and later de- 

veloped by V.A. Fok [6] and other authors [7 -101, etc. for problems in acconetics and 

electrodynamics. This uses the transformation of the sums of series into contour integrals 

(Section 2). Then the elastic displacements outside the cylinder, which are expressed in 

terms of complex integrals, are investigated in various regions of the elastic space (Sec- 

tions 3 -6). Short-wave asymptotic expansions for the displacements are found. The dif- 

fraction of a longitudinal elastic wave by a cylindrical cavity is considered in Section 7. 

In Section 8 the diffraction of plane waves by smooth convex cylinders of arbitrary section 

is studied with the aid of the ‘geometrical theory of diffraction’ proposed by Keller and 

his co-authors [ 11, 121. 

1. FomtulatIon of the problem. A plane transverse wave having the potential 

I@,, = exp (ik,r cos 6 - iotj is incident on a cylindrical surface of radius u in 

an infinite elastic space (Fig. 1). The problem consists of studying the displacements 
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generated in the elastic space outside the cylinder by the diffraction of the transverse wave 

We shall consider the cylindrical surface to be stress-free i.e., brr = 0, ‘~,.a = 0 for r - a. 

It is well known that the potentials of longitudinal and transverse waves in an elastic 

medium satisfy the Helmholtz equations 

ncp + kt% = 0, A$ + k,B.\I, =0 (1.1) 

where kI and k, are the wave numbers of the longitudinal and transverse waves. The sol- 

ution of Eqs. (1.1) together with the boundary conditions indicated haa the form [I]. 

91 =$je,(i) * n * H,,(l) (k,r) sin n6 

0 n 

$0 + $1 = f&t (i)"[- 2 H,(l)(k2r) + J,, (k,r)]cos n6 
0 

where H*(‘)(p) are Hankel functions of the first kind, J,(p) are Bessel functions. 

E, = 1, en = 2 (n=1,2, . ..). x = kla, y = k,a 

A, = [4n2- (2n2 - y2)21 IT,/‘) (x) If,/‘) (y) + 4x9 (d - 1) Hn(‘)’ (x) Hntl)’ (y) - 

-22y2 [zH$’ ‘(2) Hn(l) (y) + yH,@)‘(y) H,(l) (x)1, A(n) = n (2na - 2-yy2) 

The function A,,, is analogous to I!$, with I, (y) replacing H,,(l) (p) . The displacement 

field outside the cylinder may be written as follows: 

4ikl ~ i e, y H,(‘)‘(klr) sin nI?e{nxl* + =- 
0 

(1 2) . 

FIG. 1. + + 5 e,n [ %H,““(k,r) - J, (k2r)] sin nlbefnK12 
0 

Here and later on we shall consider expressions for just the radial component u of the 

displacement field and we shall give the expressions for the tangential component v only in 

the final results. The first sum in (1.2) represents the displacement in the longitudinal (p) 

waves and the second the displacements in the transverse (s) waves. We denote them by 

up and us, respectively. 

2. Tnnsfomtation of the displacements into tbe form of contour integrals. If k,a > 1 

and k,a s 1, the series of (1.2) converge very slowly. We shall, therefore, transform 

the sums of the series in (1.2) into integral0 along the path C in the complex plane Y 

(Fig. 2) by Watson’s method [s] 
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u’ Z f \ Y & HY(‘) (kg) - J, (k2r)] ;&$ t+‘“~2 dv + (2.1) 

Y 

where uRF and nRS are the residues of the integrands at the 

real zero Vx of the equation Atre 0. 

.As will be shown in Section 3, !I”= 0 has, in addition 

to Vy, two sequences of complex roots A,, . . ., A,, . , . 

and pit I . -> pkt . - et which lie in the first quadrant. 

Therefore, the integrals along the contour C can be replaced 

by integrals along the puth ABDEFG, where A, R, D, . . . are 

points on a circle of infinitely large radius* snd the path EF 

envelops the sequencesof roots Ak and kk (Fig. 2). It ia easy 

to show that the integrands of (21) are such that ail the in- 

tsgrahd over the parts of the infinite circle go to zero. Each integral of (2.1) along C can 

then be represented in the form of the sum of two integrala along BD and EF. All the in- 

tegrals along fff3 go to zero 88 a conaequencc of the oddness of the integrands. We trans- 

form (2.1) aeing the Wronskian of the Bessel functions 

(2.2) 

(B (vf = 2s fl - @f w,(l) fr) + yW!lf (3)) 

The iutsgals in (2.2) csu be computed in terms of the residues at the zeros of A, t 0 

UIS = (2.4) 

where, for brevity, we denote both sets of complex zeroa hk and gk of the function Av by 

VI, . . . , vk . . . 

The convergeaccl of the series (2.3) and (2.4) follows from the convergence of the 

series (1.2). However, for practical application of the series (2.3) and (2.4) rapid conver- 

genes beginning with &a first few ternm of the series is reqairod. As ws shafl see Iatsr, 

the serfas (2.3) and (2.4) eonwsrge well and are useful for application in limited regions 
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of the space. In order to extend the solution to the remaining regions, we shall transform 

the integrals (2.2), by making use of the relations 

(2.5) 
sin v6 

y=- 
s1n VJX 

sin v (a - 8) + + ,iV (n-e) Cos = 
sin VJC ’ sin vaI 

‘OS ’ (n - ‘) eiVx _ ieiV (n-4) 
sin vrc 

Each of the displacements in (2.2) then consists of the sum of two integrals along EF. 

The first integrals, just as before. are calculated by means of the msidaes at the zeros of 

At,; the second integrals may be evaluated by the method of steepest descent, in which 

case the additional terms Z@ , and uli, the residues of the integrand at the zero 

l/IV x, will appear. Thus 

(2.6) 
up = 8ikl 2 

* (vlr) 
H,;“’ (k,r) 

sin vk (n - 6) ivgc 

Ir (‘-‘A, / Wvk sin vkn e*p T+ 

+ $ \ y H,(l)’ (kl r) eiv P”n-e) dv + zQ + ulR E u2p + up + uaR” 

..2+( 
B (vJ Hv k(1) (kzr) sin vk (IC - 0) ivkn 

(84 / V.,,, w,;l) (y) sin v&X exp 2 - 

,iv P/t n-0) &I + 
(2.7) 

+ uR* + u$ SE uz” + us + uo + UZR8 

In the Eqs. (2.6) and (2.7), the series in Vk for n(I P and ulS converge rapidly everywhere ; 

the integrals along the suitable steepest descent paths are denoted by Up and II’ + UO. 

3. The roots of the equation A,, = 0 for ha > 1 and kla 9 i. Surface waves. 

All the arguments presented thus far have been exact. Later we shall study the shortwave 

asymptotic expressions for the elastic displacements, k,a 9 I, and ]caa > 1. We shall, 

therefore, replace the Bessel functions occurring in the solution by their asymptotic re- 

presentations. 

In the regions of the complex plane I, where 

/ v2 - ~2 1 9 AT"~, 1 v2 - y2 1 > AY"~, A-2.5 

(we shall call these the Debye regions), the asymptotic expressions of Debye [13, 141 are 

valid for Bessel functions with arguments x and y, The more complicated Hankel-Fok 

asymptotic expressions [6] 

J, (P) = & ($-” v (t) 

t=(v- 
(3.2) 

must be used for the Bessel functions in the regiona where the lneqnalitiea (3.1) are not 
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satisfied (we nhall call these the Fok regions). Here w (t) = u (t) + iv (t) is the Airy 

function [6]. 

For x B 1 and y B 1, the roots of Av I 0 are of the order of these quantities. There- 

fore, dropping terms of higher order. we obtain 

AV = - (2va - ya)a H,(l) (5) H,(l) (y) + 4zyvaHV(‘)’ (r) @)’ (y) = 0 (3.3) 

Outside the Fok regions near the real axis this expressions assumes the form 

A- Y- H,(‘) (z) H” 
- _ 

(I) (y) [ - (2v2 - y2)a f 4~2 l/v2 - x2 dy2 - y2] = 0 

The expression in brackets is Rayleigh’s equation, which has a real positive root vX=Kyt 

where K > 1 depends on E = r/y < 1. The other roots of Eq.(3.3), hk and pk are located 

in the first quadrant near the lines of zeros of H,(‘)(r) and HJ” (y) which pass through 

the pointa y = x and v P y, respectively. In a Fok region of the function HJ” (z), the 

following expression is valid : 

Iv2 - x2 I - Ax'is or 1 t j =(1/2x)“a 1 V - x 1 - 1 

Therefore 

A, s - 4a9y 1/l - .+a-/” (‘/2x)-z’” [w’ (t) - Q1w (t)] ~~(1) (y) = o (3.4) 

(Q1 = i (2&Z - I)2 4-l&-3 (1 - G-‘/z (‘/2x)‘/‘) 

For qI II 0 the roots of (3.4) coincide with tk I, the zeros of w’(t), and for q1 = 00 they are 

:ko, the zeros of w (t). Equations of the type (3.4) are studied in detail in [6,7] and series 

for the computations of tk, the roots of (3.4) for I 41 / r/2f;l > 1 and I 91 / I/g1 < 1. 

are given there. For 1 qll v/t, ) - 1 it is necessary to use the eqnation dt/dq, = l/(t- q12), 

which is a consequence of (3.4) and the definition of the Airy function w (t), and to solve 

it numerically with the initial conditions tk = Q * for q1 = 0 or tk = tk” for q1 = m. The 

roots of Eq. (3.4) are located in the first quadrant near the straight line arc t = ‘/+ 

In a Fok region of the function H,,(t) (y) 

Ay = - 4iy4 7/i - ~%C”~(~/~y)--l’~ [w’ (T) - q2 w (z)] H,(1) (x) = 0 

qa = 4-l (1 - &2)-1’2 (‘/,y)“l, z = (v - y) (‘12y)-“’ 
(3.5) 

The roots rk of Eq. (3.5) lie near the straight line arc z = l/Sz in the first quadrant. 

Using the above asymptotic expressions. we shall now give an interpretation of the 

terms with the index R in (2.1). Mathematically, they are computed as the residues of the 

integrands at the pole vx = xy. The expressions for these displacements on the surface 

of the cylinder assame the form 
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(uRu), = 2 1/2nyk,zr (2x2 - 1)s ha (e, a) A (1, n) AO-’ e@ sin xy6 

(u~*)~ = - 4 Jffi$jk,x4 (2~~ - f)2 A2 (E, a) A (1, a) AO-le”e sin xfl 

(I$)~ = - 2 Jf2nyk,xs (2x2 - 1)3 A (1, a) A,+* cos x!/6 

(u& = v/2nyk,x ( 2x2 - 1)’ A (1, a) A,-‘$@ cos xy6 

A,, = [8x6 (~2 - 1) + 4x2 - I] sin xyn 

A (e, r) = ~/x2a2 I 9 - Ed, 8 = l/x2 - 1 - x [ arc cos x 1 - 1/2ixn 

which are correct up to terms of order y -I. And near the surface of the cylinder 

UR pz (u&, (a / +A (E, r) A-l (E, a) exp [- (r - n) k,A2 (E, n)] 

VR ‘S (v$), (a / r)3’gA (E, a) A-’ (E, r) exp [ - (r - a) k,A2 (E, a)] 

uR8 z (IL;),, (a / F)“~A (1, a) A-l (1, r) exp [- (r - a) k,.42 (e, I)] 

VR ‘ZZ (u$)~ (a / r)“‘A (1, r) A-1 (I, a) exp [- (r - a) k,A2 (E, I)] 

Thus, the displacementa having index R propagate along the surface of the cylinder 

with the velocity f b/K and decay exponentially with distance away from the cylinder; i.e., 

they correspond to the motions of Rayleigh surface wavea. 

4. The geometrical porLion of the dfaglacement field. Let PO atady the physical mean- 

ing of the components of the displacements which are expressed in (2.6) and (2.7) by fn- 

tegrals along paths of steepest descent. In the region where (3.1) is rratisfied, 

kIr - x $%D x1/. and kg - y 3 y‘/s let us apply the Debye asymptotic exprenaiona for 

the Bessel functions. We note that the path of steepeat descent for the first term in the 

integral of (2.7) must pass through the two saddle points uo and vO,, (vO < y < vW) and 

through the first zero of the function Hi2’ (~1. 

e3irr / 4 

us + ug = __ 

s 

A- W 

r j&i A+ (v) >*ksar2 - v2 
Jeio2 dv - s \ vk3sr’y eicp8 dv 

- v2 

(4.2) --- 
QD1 (v) = Jfk1sr2 - va - I/z2 - v2 - ‘r/y” - V2 - 

-v arcco~Y-ar~~~~~-arccosy-11~~+6 
( 

V V 

hr 
V 

mD, (v) = l/k,2r2 - v2 - 2 v/y” - v2 - v arc cos -?- - 2arc COS y - 
( W 

*/an + e) 

CD, (v) = vks2r2 - v2 - y (arc cos v / k,r - 1/1fi $- 6) (4.3) 

- ___ 
A.’ (v) = 4~2 1/$ - vr v/y2 - va -& (2v2 - y2)a 

In (4.2) the first integral is taken along a contoar pan&g through the left saddle ~0, 

while the second is along a path through the right one IJW and gives the dimplacement 
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field in the fncident wave ~0. 

The saddle point V’ for the ihtegrals of (4.1) is determined, according to (4.3), by the 

sqaation 
(4.4) 

@I’ (9) = - arc COB (v” / k,r) + arc cos (Y” / X) -t; arc cos (Y’ / y) + l/an: - 6 = 0 

Let uo l st v” / y = sin a,, v0 / I = sin PI, v0 / k,r = sin 61, Eq. (4.4) will then be 

l atiefied if 6, = a, + PI -J- 6 - JL 

The geometrical aignificclnce of the anglea is ohown in Fig. 3. 

FIG. 3 FIG. 4 FIG. 5 

The method of eteepeet descents is applicable to (4.1) as long as / vo2 - x2 j %A~‘13 

and toe & >> x-IA. The point v” = x corresponds in the physical apace to the angles 

$1 = r/m and a, = ax (a” Lx the angle of total internal reflection). Thus the steepest 

deecent approximation ceaaea to be valid for the computation of longitudinal motions near 

the bonndary of the shadow of the longitudinal waves (Fig. 4) 

rl = a /’ cos (SX - 6) (SX .-I - 1X) (4.5) 

The eaddle point va for (4.2) is determined by the condition 

@,’ (v,) = - arc cos (v, / krr) -+ 2 arc cos (va / y) + V,n - 6 = 0 (4.6) 

We net v. / y = sin a, and vt, / klr = sin 6, (Fig. 5). Then (4.6) is satisfied if 

6, = 2a, + 6 - n. The method of steepest descents can be applied formally to the 

integrale of (4.2) aa long aa 1 .Vgs - ya 1 > AyYy and cos a2 + y-‘/s, i.e., far from the 

boundary of the shadow of the transverse displacements 

ra = a / cos (l/an - 6) (4.7) 

The neighborhood of the point v. = x must also be excluded from the region of applic- 

ability of the method. In the physical space it corresponds to the region near the straight 

line 

r9 = ae I Cos (2ux f 6 + 1/ln) (4.8) 
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Moreover, it is necessary to bear in mind that when the path EF is deformed into a 

path of steepest descent in (2.7). some poles of the integrand will fall between the two 

paths. For the geometrically reflected waves we obtain the displacement field 

(_P=.-_ 4&a cos a, sin a, (2 sin2 a1 - 1) Q (E, a, a,) D (E, r, a ) 
’ x 

r D+ (aI) W (8, aI) 

x eik:n [n (E, t’, ad--n (E, a, a,)--cos aI1 

f,,p = 4ik,a sin2 aI cos a1 (2 sin* a1 - 1) P (E, a, a,) x 
r D+ (aI) W (e, aI) 

x pP [n CC, T. %)--n (C, a, a,bcoS 61 

p _ ik2a sin a, cos %D- (aA eiltp [n (I, P, w--2 cos ~1 
* D+ (ad W (1, a21 

v~ = ik2a cosa,Q (1, r, a2) D- (an) ,im [n (I, r, a,)--2 cos QI 
r D+ (a21 W (1, a,) 

(4.9) 

(4.10) 

where 

D* (a) = A* (y sin a) y-‘, 52 (E, r, a) = v/e2r2/a2 - sinla 

W (8, a) = I/Q (e, r, a) IQ (8, a, a) + cos a] - cos aC2 (e, a, a) 

5. The diffracted displacement components. Each of the displacements in (2.2) and 

(2.4) is actually the sum of two series of residues at the poles Ak and pk. For the practical 

application of these series they should converge so rapidly that it would be sufficient to 

take one or a few of the leading terms of the series. Since in the computation of the leading 

terms of the series of residues near x and y the poles lie in the Fok regions of the functions 

HY(‘) (2) or H,(l) (y), the Hankel-F k o asymptotic expressions for these functions must 

be used. Then, instead of (2.3), we obtain 

= k, (2~2 - 1) n’lr E-‘/‘s (1 - ~2)~“~ exp[i (I$ v/r2 - u2- k,a 1/l - e2)l 
hk = 5 + (I;‘? 2p tk 

where the tk are the roots of (3.4). The following asymptotic expression is valid near the 

straight line arc t = ‘/,n [6] : 

w (tk) % 
2;/4 in (_ l)k-t . 

(5.2) 
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Therefore, rapid convergence of the series (5.1) is determined by the factor 

exp i F, = exp [ihr, (arc cos E - arc cos (a/r) - 6 + l/,n)l 

and since the Ak have positive imaginary parts, this condition 

ImF1>O, or z1 = arccose - arc cos (a/r) - 6 + ‘i,n>O (5.3) 

io antiafied to the right of the line (4.5) in Fig. 4. The series in /.tk in (2.3) results in 

purely surface disturbances. In an analogous fashion, we find that rapid convergence of 

the series in hk in (2.4) will occur whenever 

z2 = 2 arc cos E - arc cos (.92/r) - 6 + ‘/,n>O (5.4) 

i.e. in the region to the right of the line (4.8) in Fig. 4, and that the series for the transverse 

displacements themselves have the following asymptotic expressions : 

(5.5) 

exp [il., (2 arc cos e - arc cos BU / r - 1/z n)] sin h,6 

r,, - Qla sin 

V1*8 = - 
exp [ih, (2 arc cos e - arc cos ea / r - t/an)] ccs h,13 

q-u)‘“(l_ g,‘“;_ 
rk - Qla Yz$Y 

M E M (e, k,, k,, a, r) = k,B-I” ~9 (1 - e2)-1”(2e2 - I)” (nk2a)“12 x 

x (2 / k,a)“’ exp Iik, (1/r” - A2 - 2a VI - Ed) + 1/a in1 

Rapid convergence of the series in pk in (2.4) is determined by the condition 

zy = - arc cos (a / r) - 6 + ‘i, n > 0, or r < a / COS (l/r, - 6) (5.6) 

This is the region of the geometric shadow I in Fig. 4. The asymptotic expressions for 

the series in pk of (2.4) are the following: 

(5.7) 

ul: = iN (k,, r, a) (f )“‘(I - f)-“‘2 
exp L- ip, (arc cos a / r + 1/z II)] sin pkfi 

k ldJa bk) bk - qza) sin pk TI 

- N (k,, r, u) a ( r)“*(l-g I 7 exp [ - ipk (arc cos a / r + ‘/a n)] cos pkti z 
k wa bk) bk - qsa) 

N (k, r, a) = (8nk)“‘a-“’ (1/2ka)1’“exp [i (kv 
,-P 

r2 - a2--- 1/,n)] 

where Tk are the roots of Eq. (3.5). and /A,, = _Z_/ + (l/ay)l’sZk. 

The series (5.5) and (5.7) show that a transverse wave incident on the body produces 

two types of transverse diffracted waves, the physical significance of which will be clari- 

fied in Section 8. 

Each of the series of (5.1). (5.5) , and (5.7) has its own region of convergence (Fig. 4) 
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determined by the inequalities (5.3), (5.4) , and (5.6). Outside theac region0 of convergence, 

the aolntion mast be taken in the form (2.6) and (2.7). The asymptotic cxprcaaiona for the 

first terms qp and 4’ in (2.6) and (2.7) lead to series which arc analogoar to (5.1). (5.5). 

and (5.7), but which converge well everywhere 

(5.8) 

exp [ih, (arc cos e - arc cos a / r +- 1/2 fit)] sin h, (n: - 6) 

w ($) ($ - (71%) sin h,n 

u.2p = iL ( G)“‘~ ( 1 ;; )+‘+ exp Lihk ‘arc;;k;;kaE;;” / r + ‘h n)l coss;;~k; 6) 

exp [ ihk (2 arc cos e - arc cos eu / r + ‘/Z n)] y 
I 

uzz= = 

u2zs = 

The series (S.l), (SS), (5.7)-(5.10) rc p resent the diffracted components of the dis- 

placements in the longitudinal and transverse waves. Thus, the field of longitudinal dia- 

placements is represented by the series (5.1) in the regions 1 and 2 (Fig. 4) and by the 

sum of the geometric terms (4.9) and the series (5.8) in the rcgiona 3 and 4. The trana- 

verse diapIacement components are represented by the series (5.5) and (5.7). However, as 

a consequence of the fact that the regions of rapid convergence of these series are differ- 

ent, the total solution can actually be used only in the region 2, the region where both 

converge. Outside of region 1, it is necessary to use solutions in the form of the sum of 

the series (5.9) and (5.10) and the integrals (4.2). The integrals (4.2) provide the geo- 

metrical part of the transverse displacement field (4.10) as Iong as v. < x; this corresponds 

to the region 4 of the physical apace (Fig. 4). When ~0 > x, roots AA of the equation 

A,,=0 near the point x will be located between the path of atccpcat descent and EF 

(Fig. 6). Th cr ef ore, the integrals of (4.2) provide two terms: the geometrical part plus a 

sum of residues of the intcgrands at the zeros AA. This latter sum, together with the 
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series (5.9). gives the series (5.5), which is rapidly convergent everywhere outside the 

region 1. Thus, in regions 2 and 3, the transverse displacement field will consist of the 

initial field, the reflected field. and the diffracted field represented by the series (5.5) and 

FIG. 6 

Summing up, and omitting the surface wave 

components of the displacements, we may re- 

present the entire displacement field in each 

region in the following form : 

6. Att~u& of the di~glacemaak in the transitton redoas. The equations for the 

longitndinal components of the displacement field (4.9) and (5.1) cease to be valid in the 

region or nesr the straight line (4.5), and those for the transverse displacements (4.10), 

(5.5), and (5.7) in the regions We and or, near the straight lines (4.7) and (4.8) (Fig. 4). 

In the physical space, or corresponds to the region of the penumbra for the longitudinal 

componeuts of displacement, o, is the region of the penumbra for the transverse compon- 

ent, and co, is the transition region near the angle of total internal reflection. In the 

u-plane, these regions correspond to Fok regions for the Bessel functions. We shall now 

show to compute the displacement field in these regions. 

In the region or, the longitudinal displacements must be taken in the form of the sum 

of two terms. One of these is the series (5.8) which converge rapidly everywhere, and the 

other is the integral on EF in (2.6), for the computation of which the flankel-Fok asymptotic 

expression for Hv(‘) (r) (3.2) will be used. Then 

2e2p2 (t) - 1 V (t, r, 1) cxp (%) & 

P w V (6 a, E) w’ 0) - Q 0) w (t) 
(6.1) 

v = z + (‘/2x)1’Y G “p (t) 

v (t, r, E) = (1 - Ea.: (4 _)“I, q @) L i [2s2p2 (t) -- 112 (‘12r)’ ,’ 
4e3p2 (t) 1/l - &2p2 (t) 

$1 = xP 0) Plan - 6 - arc cos (ap (t) / r) + arc cos FP (t)]+ 

i+ k1rV2 (t, r, ‘i) - yV2 (t, a, E) 
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The quantity zI, which is defined in (5.3) is S co9 & near the boundary of the shadow. 

Therefore, in the region wl, the relation ( z1 1 - x-“’ is valid. In the illuminated region 

for the longitudinal displacements, 3, 4, (Fig. 4), z~z”* < - 1, and in the region of the 

fall shadow, 1. 2 (Fig. 4). zlz”* > 1. In the penumbra, where 1 Zll X1”- 1, the integrals 

(6.1) must be computed by a quadrature method. To do this, it is convenient to transform 

the integration path into the broken line r going from 00 exp (2ni / 3) to 0 along the 

straight line arc t = 2/sn and from 0 to 00 along the real axis and then to use the repre- 

sentation of the function w on the complex ray arc t = 2n/3 [6]. The transformed integrals sre 

calculated from tables of the functions u (t) and v (d and their derivatives which are 

given in [6]. 

When z,zx < - 1, the principal part of the integration in the integral of (6.1) will lie, 

after the proper defortnation of the path, near the large values of t. For these t, the asympto- 

tic formula 

w (t) = (- ,)--“4 exp [a/.$ (- $” + ‘l,ni] 

of [6] for the Airy function is applicable. Substituting these values into (6.1), we compute 

the integrals by the stationary phase method and obtain a result which for angles of in- 

cidence near ax coincides with the expressions for the ‘geometrical’ components of the 

displacements. 

When ,,y >> 1, the integrals of (6.1) can be calculated by means of the residues of 

the integrand at the zeros of (3.4). We then obtain series which converge well in the region 

of the shadow and which, when summed with the series (5.8), agee with the solution (5.1) 

obtained earlier for the region of the shadow. In this way, the solntion in the region of the 

penumbra ties together, as it were, the solutions obtained for the illuminated region and 

for the region of the shadow. 

The ,expressions for the components of the transverse displacements cease to be valid 

in the regions op and o,. For the region We, we take the solution (2.7). replacing the series 

in vk by their asymptotic representations - the series (5.9) and (5.10) ; to compute the sec- 

ond integral along EF, the Hankel-Fok asymptotic expressions for H,“)(x) must be used. 

Then 

where 

E 

(6.2) 

$2 = k,rv” (t, rr E) - 2yp (t, a, E) + sp (t) [‘/$I - 6 - 
- arc CO2 cap (t) / r + kC COS Ep (t)] 
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In the transition region near the angle of total internal reflection 1 22 1 - ye”* , the 

second integral in (6.2) must again be performed by numerical quadrature, after transform- 

ing the path of integration into the path r. 

In region 4 (Fig. 4) z,y”g < - 4, and the principal part of the integration in the in- 

tegral (6.2) for the method of stationary phase will lie near large negative values of t. The 

integral8 (6.2) then give a solution which coincides on some part of the region 4 with the 

solution which was obtained before, (4.10). For the region zlyzis >> 1 and x < I: + 

(‘/nx)“‘t <V the value of t will be large and positive. Therefore, the asymptotic expression 

b1 

u(t) = t-l” exp (a/.$‘/‘), v (t) = ‘/$+1 exp (_ z/,t-“1%) 

should be used for IU (t). 

Moreover, the fact that poles of the integrand of (6.2) lie between the line of steepest 

descent and the path of integration should be considered. Then, in some interval of fnte- 

gration t > 0, lying outside the Fok region v w x, us in (6.2) will consist of two parts ; 

the firet, computed 8s an integral near a 8addle point, coincides with the ‘geometric’ 

componenta of the transverse displacements ; the second is a series in residues at tk 

which, when summed with the series (5.9) results in the series (5.5) for ut:, this latter 

series converging well for zazl’” >> 1. Thus, Eq. (6.2) ties together the solutions in the 

region8 3 and 4. 

In the region co,, we once more take the solution in the form (2.7), replace the series 

in Vk by their asymptotic representations (5.9) and (5.10), and make use of the Hankel-Fok 

asymptotic representation of H,(t) (y) to co m p ute the integral along EF. In the transforma- 

tion of the contour EF of the v-plane into the corresponding contour r in the ~-plane. we 

note that the poles I f (l/,&‘/~tk of the integrand will lie between the contours. Therefore, 

the integral along EF is replaced by an integral along r in the T-plane plus a series in 

the residues of the integrands at x + (1/4x)‘/‘tk. This last series when summed with (5.9) 

again give8 the series (5.5). Thus, in the region o,, the solution is represented by the 

series (5.5) and (5.10) and integrals along the path r in the ~-plane. Just as in (6.1), these 

integrals must be calculated by a numerical quadrature method. It is easy to show that for 

z~Y”~ < - 1, i.e., in the illuminated region for the transverse displacements, the integrals 

give a geometric displacement field which coincides with (4.10) in some interval. 

For z,y”’ > 1, i.e., in the region of full shadow, the integrals are computed by means 

of residues of the integrands and result in a serier, which when summed with (5.10) coincides 

with the series (5.7). Thus, the solutions in the region8 ol, opt and w, tie together the 

solutions obtained earlier in Sections 4 and 5. 

7. Diffractloo of a longitudinal wave. With the same formulation as in Section 1, it is 

possible to consider a longitudinal elastic wave with the potential 

(po = exp (ik,r cos 6 - ht). 
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incident on a cylinder. The complete solution of this problem on the surface of the cylinder 

is given in [lS] ; here we shall give expressions for the displacements in the diffracted 

waves because we shall require them in Section 8 : 

(7.1) 

US ’ = N (kl, r, a) 4 (J(*._$yF exp[ 
- ih, (arc cos a/r + Vs n)] cos A,6 

uJa Qk) P/c - q) sziqi 

UgP = iiv (k,, r, a) (t)” (I- $)-I” 2 
exp [- ilik (arc co8 a/t + t/a at)] sin I.,# 

k wa @k) @k - q12) 

and for the transverse components 

(7.2) 

US8 =-iip +!_ ( 
v* 
) ( 1 - 9 g-“. 2 exp [ih, (arc co9 e - arc co9 ~4 / r - 1/a n)] cos Ak6 

k w @k) @k - qla) ziqz 

US8 
= _ p (g”’ ( 1 _ e2 f)“’ KjJ exp [ihk (arc cos 8 - arc cos &?a / r - ‘/a a)] 8i;:z 

k w @k) @k - qla) k 

P E P (e, k,, a, r) = 

k, (29 - 1) JC”’ (1 - JJ~)-“~ exp [ik, (I/P - $ea -I a v/1 ---es) 

The region of rapid convergence of (7.1) is determined by the condition 

FIG. 7 

- arc cos (a / r) - + + ‘/2n > 0 

i.e., the region of the geometric shadow (Fig. 7). For the series of 

(7.21, the region of rapid convergence lies to the right of the ray 

whose equation is r4 = ~8 / ~0s (fix - a), i.e., 

arcc0se-aarcc0s(8a/r)-~++/,n>0 

Outside of their regions of convergence the longitudinal and 

transverse components of displacement are represented by the sum 

of geometrical and diffraction terms. The latter are series analogoan 

to (7.1) and (7.2) replacing the factors sin A# and COB xkd, in accordance with (2.51, by 

- sin hk (n - 6) exp (ik_$t) and COS hl, (n - *) exp (i&n); these series converge 

rapidly everywhere. 

8. The geometrical theory of diffraction of plane elastic waves by an PrbltruJ convex 

cylinder. We shall use Keller’s method in the geometric theory of diffraction, with some 

modifications, in order to solve problems of the diffraction of elastic waves. We shall pose 

the problem as follows : A harmonic wave, longitudinal or transverse, is incident on a 

smooth, convex cylinder in a homogeneous elastic medium. It is required to find the dif- 

fracted displacement field outside the diffracting body. In contrast to [ll, 121, we shall 
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conmider that diffracted rays are produced not only by the initial longitudinal and trans- 

verse rays which are tangent to the sarface of the body, bat also by the initial transverse 

rays which are hcident at the angle of total internal reflection a x. M oreover, a surface 

longitadfnal diffracted ray will emit, not only longitudinal diffracted rays, but transverse 

diffracted rays aho, these making an angle ax with the normal to the surface of the body. 

FIG. 8 FIG. 9 

All then diffracted rays will correspoad to the extended Fermat principle, i.e., they 

contain geodemic ercm along the sarface of the body and straight lines from the body to 

the point P ander consideration (Figs. 8 and 9). We shall characterize the diffracted field 

IU on each ray by tha l mplitade A, which is a vector for a vector field, and the phase 6. 

In the cama of an incident transverse wave, the diffracted field W,(P) at the point P 

will be formed from the sam of the fields on rays of three types: a longitudinal and a 

tranmverme dlffracted ray emitted at the point P, (Fig. 8), and a transverse diffracted ray 

of the head-wave type emitted at P ‘. Let the initial ray at the point Qi be characterized by 

the amplitade &(Q$ and the phase 6(Q,). The displacement field at the point P which is 

l amociated with the three diffracted rays beginning at Qt and Q’will be 

Wd (P) = wp (P) + WIS (P) + R8 P) (8.1) 

where ~f’and W’ are the displacements on the longitadinal and transverse rays P,P and 

We’ that on the transverse ray P ‘P. It will be assumed that the direction associated with 

tha dfsplacament amplitude remains constant along a straight ray and that its magnitude 

ia determined by the same constraction as is given in [12] for a scalar field. Then 

wp (P) = A, (0’) exp { ik$, (Q’) + ik, (G, + St)} (sl)p,-li-x 

k 

(8.2) 

WI* (P) = AO (0’) exp {ik, [b (Q’) -t- s21 ‘+ ih,a2} [p / (p + SJ]~:/Z~ 

x xDk.; (Q’) Dk, :(P’) exp {-- y fh. (6) da} 
(8.3) 

k 
0 
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w; P) = A, (QJ exp WC 16, (QJ + s1 + ~~1) (sJpl-“* x 

where ui is a distance along a geodesic arc on the surface: or = Q’Pr, G, = Q’P’, 

0, = Q,P,, si is a distance along a straight line: s1 = P,P and s2 = P ‘P, p is the curv- 

ature of the wave front, and D (Qi) are the diffraction coefficients at the point (Ii, which 

are equal to ratios of the amplitudes on the various rays at this point. The superscript on 

the coefficient D denotes which type of ray, longitudinal (p) or transverse (s) is trans- 

formed into another, the latter being denoted by the subscript. Thus, Dk, i (Qi) is the 

ratio of the amplitude of the transverse ray to the amplitude of the diffracted longitudinal 

ray at the point Qi, etc; yk denotes the decay exponent of a transverse surface ray as a 

result of emission of transverse rays, and u.~ and pk are decay exponents of a longitudinal 

surface ray as a consequence of emission of longitudinal and transverse diffracted rays. 

The subscript k indicates that the field on the diffracted field on the surface diffracted 

wave consists of a set of different frequencies. Each frequency is characterized by its 

own diffraction coefficient and decay exponents, either ak, pk, or rk. On the basis of the 

principle of reciprocity, it will be assumed that diffraction coefficients with identical 

upper and lower scripts are the same functions of their variables. 

Knowing the form of the body and the coordinates of the point P. one can always find 

the direction of the displacement (Figs. 8 and 8) ; if the sign of the displacement is taken 

incorrectly, this is taken into account when determining the corresponding diffraction co- 

efficient by the sign of the coefficient. 

In the case of a longitudinal wave incident on the body, a diffracted longitudinal 

surface ray is formed at the point of tangency. This gives rise to two families of dif- 

fracted longitudinal and transverse rays. The diffracted field at the point P (Fig. 9) will 

equal 

wd (p) = wgp (p) + was (P) (8.: 

wgp = A, (QJ exp {ih-, 16, (Q1) + c3 -t q)) (~JP,-'/~ x 

x FDk ,g ( Q1> Dk,; (p,) exp {- 7 ak 6~) do} 
6 

~3’ = A0 (QJ exp (4 [4, ( Q1) + uql + ik&(&)~, x 

x ~DI~,PP (QJ DK,? (P’) exp {- % f&i (0) do) 
k 0 

(8.6) 

(8.7) 

where U, is the geodesic arc between Qt and P ’ (Fig. 9). 
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Further, following Keller, we shall consider that the diffraction coefficients D (Qi) 

and the decay exponenta depend to a first approximation on the character of the fields k, 

and k, and the properties of the body at the point Qi (more precisely, on the radius of curv- 

ature of the body at the point Qi). Th erefore, the diffraction coefficients and the decay 

exponents may be determined by solving the problem of diffraction of longitudinal and 

transverse waves by any body of simple shape. 

Thus, in order to solve the problem of diffraction of plane elastic waves by a cylindri- 

cal body of arbitrary section, it will suffice to find the solution for the diffraction of plane 

elastic waves by a circular cylinder of radius a with the corresponding boundary conditions 

and to carry out the asymptotic expansion of the sdution in l/k, and I/k,. Next, the asym- 

ptotic expansion and the solution by Keller’s method are compared and diffraction coef- 

ficients and decay exponents are found as functions of k,, k,, a. With the shape of the 

body known, the solution can then be constructed with the aid of the coefficients which 

have been found. 

We shall apply the preceding method to find the displacements in an elastic medium 

when plane elastic waves are diffracted by a circular cylinder. We make the following 

comment: since the cylinder has constant radius of curvature and the elastic medium is 

homogeneous, the decay exponents are constant along a ray and depend only on k,, k,, 

and a. 

Let us now examine the problem of the incidence of a transverse wave on a circular 

cylinder. Three types of diffracted rays will arrive at a point P which is in the geometric 

shadow : a longitudinal ray (8.2). a tranaverse one (8.4). and a transverse one of the head- 

wave type (8.3). Besides the three rays which arrive at P from the top of the cylinder, it 

is also necessary to consider the three rays from the bottom of the cylinder and all those 

rays which go through the point P after having encircled the cylinder n times. 

Summing up all the fields on these rays and taking account of the orientation of the 

displacements, we find the field on the transverse rays at point P (Fig. 10) 

u2a (P) = - &(+)3ir(l -?-)-1’4a-‘he’k. ~“-“‘~(&:)z x 

1 
sin 6a (ika - rk) (8.8) 

sin na (& _ r 
k 

) 

Here and in what follows, formulas are given only for the radial component I( of the displace- 

ments in the diffracted field. In Figs. IO-14 the directions we have taken for the displace- 

ments on the upper diffracted rays (P, P, P ‘P) and the lower ones (P,P, P “P) are denoted 

by arrows at the point P. The transverse rays which strike the cylinder at the angle U’ 

give rise to longitudinal and transverse diffracted rays. 

The displacement component on the longitudinal rays (Fig. 11) are 
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wo Wo Loo 

FIG. 10 FIG. 11 FIG. 12 

and for the transverse displacements of the head-wave type Wig. 12) 

03.9) 

uls (P) = - ika e (1 - e2)‘14 a ‘It 

(1 _ &2/ ,2)*/d 7 ( 1 eikt o/r’-r’a’-?a v1_E’) X 

i8.10) 

x 2 &,;&,:exp K 2 arc cos e - arc cos ‘G -$)(ikl - flk) a] 

sin #a (ikl- fik) 

k 
sin ~a (ikl - pk) 

By comparing the results obtained for the displacements (8.8) -(8.10) with the asymptotic 

expressions for the region of the geometric shadow in the exact method (5.7)-(5.9). we can 

obtain only products of the diffraction coefficients. This, however, is not sufficient. To 

solve the problem for a body of arbitrary shape by Keller’s method it is necessary to know 

the values of these coefficients individually as functions of k,, k,, and the radius of cnrv- 

ature of the body. 

We shall therefore examine another case, that of incidence of a plane longitudinal 

wave on the cylinder, with the same boundary conditions. We shall obtain the field at the 

point P as the sum of fields on all the diffracted longitudinal rays (8.6) and transverse rays 

(8.7) which pass through P. 

The displacement components in the longitudinal diffracted waves are (Fig. 13) 

u3 
p = _ k,(_%j”‘(i -~)‘/‘a-l:,ix.~~~~(Dk,~)2x 

arc cos c+ +) (ikl - cqc) a] 
cos &I (ikl - uk) 
sin 3ta (ikl - uk) 

(8.11) 
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FIG. 13 FIG. 14 

The field for the transverse diffracted waves is found in a similar fashion (Fig. 14) 

Comparing (8.11) and (8.12) with the asymptotic expressiona of the exact solution for 

the region of the geometric shadow, (7.1) and (7.2) and the analogous expressiona for the 

diffraction of a transverse wave, we obtain 

ak = fjli = ik, - ihkaml = - id (k,a / 2)” tk 

r,; = ik, - @,,a-’ = - ia-’ (k,a / 2)l’” Tk (8.13) 

where tk and rk are the roots of Eqs. (3.4) and (3.51, and also five equations for four 

diffraction coefficients. From these, we find 

(8.141 

We note that the surface of the diffracting body ie a caustic of the diffracted rayr 

(except the transverse diffracted rays of the head-wave type), and that the displacements 

in the Keller method will, therefore, become infinite on the surface. In order to determine 

the surface displacements, we turn to the asymptotic expression of the exact solution. 

Near the surface as r + o we use the Hankel-Fok asymptotic formulas for the Hankel 

functions Hr) (k,r) and Hv (l' (k I) 1 and their derivatives instead of the Debye formulas. 

Therefore, the expressions for displacements near and on the body which are obtained by 
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the Keller method must be multiplied by the ratio of the Hankel-Fok asymptotic represent- 

ation of the proper function to the Debye asymptotic expression. 

In conclusion, the author would like to thank G.A. Skuridfn and N.V. Zvolinskii for 

valuable comment. 
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