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The diffraction of plane elastic waves by smooth convex cylinders is studied. The dif-
fraction of longitudinal and transverse plane waves by a circular stress-free cylinder is
considered in Sections 1-7. The solation of similar problems is given in series form in
[1]. However, rapid convergence of these series only occurs in the case when the diameter
of the cylinder a is small compared with the wavelength ¢ < 2r/k. We shall concern our-
selves with the high-frequency case, i.e., when k,6>> 1 and k,a>> 1. In [2,3] a quite gen-
eral method of solution is proposed for the problem of scattering of high-frequency elastic
waves by curved surfaces. However, the phenomena which occur are studied (in accordance
with Kirchhoff's principle) only in the ‘illuminated’ region. The diffraction of longitudinal
elastic waves emanating from a line source by a rigid cylinder is studied in [4] using a
double Laplace transformation in time and angle. The solution is found in the illuminated
region and in the shadow for the first arrival of the waves.

In this paper a method is used which was first proposed by Watson [5] and later de-
veloped by V.A. Fok [6] and other authors [7-10], etc. for problems in accoustics and
electrodynamics. This uses the transformation of the sums of series into contour integrals
(Section 2). Then the elastic displacements outside the cylinder, which are expressed in
terms of complex integrals, are investigated in various regions of the elastic space (Sec~
tions 3 -6). Short-wave asymptotic expansions for the displacements are found. The dif-
fraction of a longitudinal elastic wave by a cylindrical cavity is considered in Section 7.
In Section 8 the diffraction of plane waves by smooth convex cylinders of arbitrary section
is studied with the aid of the ‘geometrical theory of diffraction’ proposed by Keller and
his co-authors [11, 12].

1. Formulation of the problem. A plane transverse wave having the potential
P = exp (ik,r cos & — iwt) is incident on a cylindrical surface of radius a in
an infinite elastic space (Fig.1). The problem consists of studying the displacements
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generated in the elastic space outside the cylinder by the diffraction of the transverse wave
We shall consider the cylindrical surface to be stress-freei.e., 6,, = 0, 7,5 == 0 forr=a.
It is well known that the potentials of longitudinal and transverse waves in an elastic

medium satisfy the Helmholtz equations
AQ + kg =0, LAY+ k=0 (1.1

where k, and k, are the wave numbers of the longitudinal and transverse waves. The sol-

ution of Eqs. (1.1) together with the boundary conditions indicated haa the form (1.

Q, = —[:—:— Z en ()" 14# HY (k,r) sin nd
0 n

Yo + by = Den (i) [— %’i H (kyr) + Jn (lczr)] cos nd
0 n

where Hn(l)(p) are Hankel functions of the first kind, J,(p) are Bessel functions.

go=1, & =2 (2=12..) z=ka y=ka
B = ldn®— (2n* — )" H,™ (2) Ha (3) + 4oy (n* — 1) Ha™' (2) Ha™" (y) —
—2¢* [zH,V '(2) HaY (y) + yH.""(9) H' (2)], A(n) = n (202 — 2—¢?)

The function A, is analogous to A, with J, (y) replacing H,® (y) . The displacement

field outside the cylinder may be written as follows:

v 1 ( 1P1)
a(Px a 'Po-}-
+__e__. —

—p-
w 41k12 £, A(") H, ’(kyr) sin ndeinnz | (L.2)

FIG. 1. .% Dlea [ "L (r) — (kzr)] sin ndeinn/2
0

Here and later on we shall consider expressions for just the radial component u of the
displacement field and we shall give the expressions for the tangential component v only in
the final results. The first sum in (1.2) represents the displacement in the longitudinal (p)
waves and the second the displacements in the transverse (s) waves. We denote them by
uP and u®, respectively.

2. Transformation of the displacements into the form of contour integrals. If kla > 1
and k,a > 1, the series of (1.2) converge very slowly. We shall, therefore, transform
the sums of the series in (1.2) into integrals along the path C in the complex plane v
(Fig. 2) by Watson’s method [5]
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where uRP and uR“’ are the residues of the integrands at the
real zero VX of the equation A, = 0.

As will be shown in Section 3, sz 0 has, in addition

to V%, two sequences of complex roots ,7\,1, e Ay

and fly, - . <y Wys » -+, which lie in the first quadrant.

Therefore, the integrals along the contour € can be replaced
by integrals along the path ABDEFG, where 4, B, D, ... are
points on a circle of infinitely large radius, and the path EF
FIG. 2. envelops the sequences of roots Ak and 4, (Fig. 2). It is easy

8 to show that the integrands of (2.1) are such that all the in-
tegrals overthe parts of the infinite circle go to zero. Each integral of {2.1) along C can
then be represented in the form of the sum of two integrals along BD and EF. All the in-
tegrals along BD go to zero as a consequence of the oddness of the integrands. We trans-
form (2.1) using the Wronskian of the Besse! functions

F
4ky © A(V) gy sin V8 _iyesa
iy ="7{‘% S B ar) g e (2.2
E

F {n
i Iy () 4 B(m4H, (ffar)} sin V8 _syn
= .:_ S v{[{{ (1} ¢y )H » (har) — T (ker )} EREY H,W(y) ) sin v’ fedv

(Bv) =20 (1 — v HY (z) +y2HY (2))

The integrals in {2.2) can be computed in terms of the residues at the zeros of Av =

. A4{v) Ay 7y, o SV D “““w:’t“ 2.3)
uyP = “"&klg OAS 7 av),, Hoe™ (ki) g vem P TTET
Biv,) }kaii}.{hr) sin v, & —iv T
s_..,___ﬁzvk k - exp —-= (2.9)
(aAv/Gv)vk Hvkm (y) Sinv,x 2

where, for brevity, we denote both sets of complex zeros r\k and py of the function A v by
VI! v oy Vk -

The convergence of the series (2.3) and (2.4) follows from the convergence of the
series (1.2). However, for practical application of the series (2,3) and (2.4) rapid conver-
gence beginning with the first few terms of the series is required. As we shall see later,

the series (2.3) and (2.4) converge well and are useful for applicstion in limited regions
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of the space. In order to extend the solution to the remaining regions, we shall transform

the integrals (2.2), by making use of the relations

(2.5)

sin v& —_ sin v (ﬂ - 'ﬁ) ﬁ) etvn — letv (n-8)

sin vy sin vt

Each of the displacements in (2.2) then consists of the sum of two integrals along EF.

cos v __ cosv (% —

pivr iv (n-8) - —
te ’ sin vx sin v

The first integrals, just as before, are calculated by means of the residues at the zeros of
Av; the second integrals may be evaluated by the method of steepest descent, in which

case the additional terms u1£ , and U the residues of the integrand at the zero

R’
v =v%, will appear. Thus

. A(v,) 1y sin vy ( —9) v, (2.6
uP = 8ik, Z_(ES/—gﬁ_ W (kyr )—sin—vk'n_ exp —— )
k v

+ %tklg————AA(:’) HY (kyr)e® ™ Pyt uptu, =up+ U +up

B(v,) Hyv, YV (kyr) sinv, (x— 9 ;
='8—L2Vk aA(g) "k(l)(z) .k( )eX wkn_
r @A,/ V)"k H"k ) sin v,

. g® (v) 4 B (v) H, (1 )(k2 r) 2.7
. v d ey (/3 7-8)
Sv[ 3 - A ] 20 dv +

r
Fugttug=uf + U+ up +uy

In the Egs. (2.6) and (2.7), the series in v for uP and u,® converge rapidly everywhere;

the integrals along the suitable steepest descent paths are denoted by UP and U* + u,.

3. The roots of the equation Av =0for kya>>1 and K:a>1. Surface waves.
All the arguments presented thus far have been exact. Later we shall study the short-wave
asymptotic expressions for the elastic displacements, ka >> 1, and ke > 1. We shall,
therefore, replace the Bessel functions occurring in the solution by their asymptotic re-

presentations.
In the regions of the complex plane v where
vt — a2 | S>Ada’s, v — 2> Ay, A~25 (3.1

{we shall call these the Debye regions), the asymptotic expressions of Debye [13, 14] are
valid for Bessel functions with arguments x and y. The more complicated Hankel-Fok

asymptotic expressions {6]

2P0 =2 (5 0, g0 = = ()"0

P
2
H, (2) (p) = l_/"_ (%) w (e’/,ni ), t=—p) (_%_)-l/' (3.2)

must be used for the Bessel functions in the regions where the inequalities (3.1) are not
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satisfied (we shall call these the Fok regions). Here w (f) = u (t) - iv () is the Airy
function [6].

For x> 1 and y > 1, the roots of AV =0 are of the order of these quantities. There-
fore, dropping terms of higher order, we obtain

A, = — 23—y HW (2) H® (y) + 4oyv2H,V (z) B,V (y) = 0 (3.3)

Outside the Fok regions near the real axis this expressions assumes the form

A, =HM @) HY () [— v — P+ 42 V2 =2 V2 — 7] =0

The expression in brackets is Rayleigh’s equation, which has a real positive root v =Ky,
where x > 1 depends on € = x/y < 1. The other roots of Eq.(3.3), )\k and py, are located
in the first quadrant near the lines of zeros of Hu(l)(x) and Hv(l) (y) which pass through
the points ¥ = x and v = y, respectively. In a Fok region of the function Hv(l) (x), the

following expression is valid:

Ve — 22| ~Aa% or |t]=(yz) " |v — 2| ~1

Therefore

A, = — oty VI—en" (ty2) ™ ' (1) — quo O] H,M () = 0 (3.4)
(qu = i (262 — 1)2 47273 (1 — )77 ({/p2) )

For g, = 0 the roots of (3.4) coincide with t) s the zeros of w’(t), and for g; = oo they are
t,, the zeros of w (t). Equations of the type (3.4) are studied in detail in [6,7] and series
for the computations of tho the roots of (3.4) for | q;/ MI >1and 1q1/ Vtzl < 1.

are given there. For | g,/ V¢, | ~ 1 it is necessary to use the equation dt/dg, = 1/(t—g,?),
which is a consequence of (3.4) and the definition of the Airy function w (¢), and to solve

it numerically with the initial conditions ¢ =¢, - for ¢, =0 or #; = tx° for ¢y =oo. The
roots of Eq. (3.4) are located in the first quadrant near the straight line arc ¢ = /;m,

In a Fok region of the function HV(I) (y)

A, = —4iy VI —en ™ ()™ [w (1) — qaw (D] HY (2) =0

Gy 1 (3.5)
=411 —e) " Uy 1= (v —y) My

The roots 1, of Eq. (3.5) lie near the straight line arc v = 1/yn in the first quadrant.

Using the above asymptotic expressions, we shall now give an interpretation of the
terms with the index R in (2.1). Mathematically, they are computed as the residues of the
integrands at the pole v* = %y. The expressions for these displacements on the surface
of the cylinder assume the form
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(ugP)a =2 V 2mykyx? 2x2 — 1)3 A2 (e, ) A (1, @) Ayt e sin xy®

(upha = — & V2nykyxt (2x2 — 1)2 A2 (g, a) A (1, a) Ay e"® sin xyd
WP)a = — 2 V2ngkao® (262 — 1)* A (1, @) Agte® cos wyd

(e = V2ayk (22 — 1)* A (1, a) Ay7%e"® cos xyd
Ay = [B%8 (€2 — 1) + 4x% — 1] sin xyn

A (e, r)=%/u2a2/r2—~£2, 68 = sz—i—x[arccosu—l/ziun

which are correct up to terms of order y-l. And near the surface of the cylinder

uf = (g @/ A'A (e, 1) A1 (g, a) exp [— (r — @) kA2 (g, a)]
v = P @/ DA (e, a) A1 (g, 7) exp [— (r — a) kA2 (¢, a))
uR" ~ (uHs)a (a/ r)'/'A (1, a) A2 (4, r) exp [— (r — a) kA% (e, 1)]
v = (vg)e @/ 1N"A (1, 1) A1 (1, @) exp [— (r — a) kA2 (g, 1)]

Thus, the displacements having index R propagate along the surface of the cylinder
with the velocity * b/k and decay exponentially with distance away from the cylinder; i.e.,
they correspond to the motions of Rayleigh surface waves.

4. The geometrical portion of the displacement field. Let us study the physical mean-
ing of the components of the displacements which are expressed in (2.6) and (2.7) by in-
tegrals along paths of steepest descent. In the region where (3.1) is satisfied,
kyr — 2S> 27+ and kyr — y 3> y'/s let us apply the Debye asymptotic expressions for
the Bessel functions. We note that the path of steepest descent for the first term in the
integral of (2.7) must pass through the two saddle points v and Vg (Vo < y <C vy,) and
through the first zero of the function HV(Z) .

pp— 2V2 i (2 ) e ot a2 — ) 0 I 0y 0y
rV= AT (v)
in - in/4
US + ug = fii:.g 4A_ ) s gy _ € 847—;2__—': ¢ dv
rV2n JAT (V)Y kirt — 2 rVan Jy kirt — v? “2)

O, ) =ViiE —v— Vi —v2— V2 — v —
v ~y Yo )
— (arc cof o — arc cos —- — are cos [an + O
_ S v v
O, W) = Vi — v — 2 V4 — v —w (arc 008 o — 2arc cos—- — Yo + ﬁ)
Dy (v) = V2P — v% — v (arc cos v [ kyr — 1y + 9) (4.3)
AT (v) =42 Va2 —vE V2 — VB (2v2 — %)

In (4.2) the first integral is taken along a contour passing through the left saddle v,,
while the second is along a path through the right one vy and gives the displacement
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field in the incident wave uo.

The saddle point 1/° for the ihtegrals of (4.1) is determined, according to (4.3), by the

uation
oque (4.4)

@, (v°) = — arc cos (v° [ ky,r) + arc cos (v° / x) 4 arc cos (v° / y) + Yy — & =0

Let us set v° / y = sina,, v°/ z = sin By, v°/ kyr = sin 8;, Eq. (4.4) will then be
satisfied if 5, = ¢, + p, + ¥ — .

The geometrical significance of the angles is shown in Fig. 3.

FIG. 4 FIG. 5

The method of steepest descents is applicable to (4.1} as long as [ v — 22| > 4%
and cos By > 27" The point v° = x corresponds in the physical space to the angles
By = Yyn and a, = a* (@* is the angle of total internal reflection). Thus the steepest
descent approximation ceases to be valid for the computation of longitadinal motions near

the boundary of the shadow of the longitudinal waves (Fig. 4)
ry = a/cos (8 — ) (0% - 1 — 29 (4.5)
The saddle point v, for (4.2) is determined by the condition
@, (vo) = — arc cos (Vg / kyr) 4 2arc cos (vo /y) Yo — O =0 (4.6)

We set vy /y = sinay and v,/ kyr = sin §, (Fig. 5). Then (4.6) is satisfied if
83 = 2a4 + O — n. The method of steepest descents can be applied formally to the
integrals of (4.2) as long as | Vo — ¥2| >> A4y"”* and cos oy > y ™', i.e., far from the

boundary of the shadow of the transverse displacements
rg = a/cos ({/;n — ) 4.7

The neighborhood of the point 15 = x must also be excluded from the region of applic-
ability of the method. In the physical space it corresponds to the region near the straight
line

rg = ae / cos (2a* + & < 1/,n) (4.8)
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Moreover, it is necessary to bear in mind that when the path EF is deformed into a
path of steepest descent in (2.7), some poles of the integrand will fall between the two

paths. For the geometrically reflected waves we obtain the displacement field

UP = — 4ikya cos a, sin a; (2 sin?a, — 1) Q (g, a, a;) Q (¢, r, a;) x
r D+ (a,) W (e, ay)
w M [Q (e, 1, a)—Q (&, @, a)—cos a,] (4.9)

VP = 4ikga sin® @, cos a; (2 sin® a; — 1) Q (g, a, ;) v
r D* (o)) W (e, ay)
X eik,a [Q (e, 1, a;)—£1 (2, @, a,)—COS &,]

Ut = ikqa sin ag cos a3 D™ (ag) £ [Q (1, 7, ax)—2 cos a]

r D* (o) W (1, ay)

(4.10)

VS = — kg cosaQ (1, r, ay) D~ (ay) (i [Q (1, 1) a)—2 cos &)
r Dt (ay) W (1, a,)

where

DY (@) = AT (ysina)y4, Q, r,a) = Veirtja®—sinla

Wi, a)=VQ(,r a)[R(, a a)+ cosa] — cos a2 (¢, a, @)

5. The diffracted displacement components. Each of the displacements in (2.2) and
(2.4) is actually the sum of two series of residues at the poles A, and ;. For the practical
application of these series they should converge so rapidly that it would be sufficient to
take one or a few of the leading terms of the series. Since in the computation of the leading
terms of the series of residues near x and y the poles lie in the Fok regions of the functions
Hv(l) (z) or HW (y), the Hankel-Fok asymptotic expressions for these functions must
be used. Then, instead of (2.3), we obtain

Y s i exp [ih, (arc cos & — arc cos a/r — Y/a m)] sin A, &
P L2 — ﬁ) k %
ul ( r ) (1 re 2 w (L) (¢, — 9,%) sin A,
L sa\ a2\~ q exp {ir, (arc cose —arcrosa/r — 2 )] cos A, 6.
P = z-L(»—) (1————) E -
r r2 m w(t,) (L, —q,%) sin A,

L=L(, kykyar)=

=k, (262 — 1) when (1 — e2) expli (b, V P — a*— kya V1 — 9]
}vk = X + (I;Vf_, I)% tk
where the ¢, are the roots of (3.4). The following asymptotic expression is valid near the
straight line arc ¢ = /57 (6]:
ze‘/. in (— ,l)k—l

:/Tk Vi— 'Ry t,? (5.2

w(ty) =~
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Therefore, rapid convergence of the series (5.1) is determined by the factor
exp i F; = exp [iAy (arc cos e — arc cos (a/r) — O + Y, m)]
and since the '\k have positive imaginary parts, this condition
ImF,>0, or z; =arccose —arccos (a/r) — &+ Yy,n >0 (53

is satisfied to the right of the line (4.5) in Fig. 4. The series in y1; in (2.3) results in
purely surface disturbances. In an analogous fashion, we find that rapid convergence of

the series in A, in (2.4) will occur whenever
= 2 arc cos ¢ — arc cos (ea/r) — & + Y,n>0 (5.4)

i.e. in the region to the right of the line (4.8) in Fig. 4, and that the series for the transverse

displacements themselves have the following asymptotic expressions:

(5.5)

q? > ~Ya 2 exp [iA, (2arccose —arc cosea /r — 1/ 7)] sinA, ¢

uy' = M (& ) (1— = S

2 a2 \'/s1 < exp [ih, (2 arc cos e — arc cosea /r — /z3)] cos A, &
vyt = —M (f) (1 — 72_) > k

b, —q,? sin A, 3

M= Me, ky ky, a, 1) = k,8 *e-2 (1 — ) (2% — 1)? (mkya)* X
X (2/k,a)™ exp lik, (V' 78 — ae® — 2a V' 1 — &) 4 Y/, in]

Rapid convergence of the series in 1, in (2.4) is determined by the condition
zg = —arccos(a/r) — O+ Yyn >0, or r<a/cos (Yym—13) (5.6)

This is the region of the geometric shadow I in Fig. 4. The asymptotic expressions for
the series in j1; of (2.4) are the following:

5.7
) o exp [— ipy (arc cos a/r ++ 1o )] sin p, @
C= N (k0 (L) (1— 2 P :
Ugg IN (ky, r, a) ( - ) (1 73 ) 2 WA (1) (7 — ¢,) sin py
e exp [—ip, (arc cosa/r 413 m)] cosp,®
S N(k a __at\ Iy exp k 2l
D1 e, (£) (1= 55) < 0 (5) (% — 457) S

N (k, r, a) = Bnk)"a™" (Y ka)"exp [i (kV 7° — @® — V,n)]

where 7, are the roots of Eq. (3.5),and p, =y + (}/,y) B

The series (5.5) and (5.7) show that a transverse wave incident on the body produces
two types of transverse diffracted waves, the physical significance of which will be clari-
fied in Section 8.

Each of the series of (5.1), (5.5), and (5.7) has its own region of convergence (Fig. 4)
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determined by the inequalities (5.3), (5.4), and (5.6). Outside these regions of convergence,
the solution must be taken in the form (2.6} and (2.7). The asymptotic expressions for the
first terms u,P and u,* in (2.6) and (2.7) lead to series which are analogous to (5.1), (5.5),

and (5.7), but which converge well everywhere

(5.8)
Ys 2\ < exp [iA, (arc cose — arccos a/r /2 )] sin AL (n — &)
up = L(2)" (1— 2} 522 : c
2 re) £ w ()t — 9,%) sin A, 7t
s 2\ exp [iA, (arccose —arccosa/r + Yy n)] cosh, (n—7@)
ugp = iL (&) (1— 2) Y P L
2 r2 = w () (4 — 4,%) sin A,
3 2\~"1y exp [iA, (2arccose — arc cosea / r + a m)]
8 — i e . k e
unt = — i (2 (1 23
sin by (1~ ) -
sin A,n
2 2 \Yaxqexp [ih, (2 arccose — arccosea [r -1/ )]
a a k
u915=-—M(7> (1——?) ; P— —

cos Ay (n— 1)
sin A7

>~‘/. Z exp [— ipg(arccosa/r —1jzm)]

s . . a\7y a?
Ugy’ = — IV (kZ» r,a) <T> (1 — 7 < w? (1,) (T, — 1,%)
sin py (n —9)

__W (5.10)

1/,

Ug' = — N (kg, 1, ) (%) (1 -_—“i)v‘zexp [ iy v cosa/r — o] X

rz . w? (1) (v, — ¢,2)
cosp, (n—9)
sin p,n

The series (5.1), (5.5), (5.7)-(5.10) represent the diffracted components of the dis-
placements in the longitudinal and transverse waves. Thus, the field of longitudinal dis-
placements is represented by the series (5.1) in the regions I and 2 (Fig. 4) and by the
sum of the geometric terms {4.9) and the series (5.8) in the regions 3 and 4. The trans-
verse displacement components are represented by the series (5.5) and (5.7). However, as
a consequence of the fact that the regions of rapid convergence of these series are differ-
ent, the total solution can actually be used only in the region I, the region where both
converge. Outside of region 1, it is necessary to use solutions in the form of the sum of
the series (5.9) and (5.10) and the integrals (4.2). The integrals (4.2) provide the geo-
metrical part of the transverse displacement field (4.10) as long as v, < x; this corresponds
to the region 4 of the physical space (Fig. 4). When 1o > x, roots ’\k of the equation
AV=0 near the point x will be located between the path of steepest descent and EF
(Fig. 6). Therefore, the integrals of (4.2) provide two terms: the geometrical part plus a
sum of residues of the integrands at the zeros A. This latter sum, together with the
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series (5.9), gives the series (5.5), which is rapidly convergent everywhere outside the
region 4. Thus, in regions 2 and 3, the transverse displacement field will consist of the
initial field, the reflected field, and the diffracted field represented by the series (5.5) and
(5.10).

Summing up, and omitting the surface wave
components of the displacements, we may re-
present the entire displacement field in each

region in the following form:

Region 1 = = u,” + TP '
v=9" 4+ v, + ¢

Region 2 u = uy" -+ u;” I Uy - U°,

» 12

U= vlp 4‘— Ullg *}* ?/‘22' i VS
Region 3 w = uy” + U” -F up’® Fup' + U
o VP Loy oy LV
FIG. 6 v 2 1011 -1 g y
Region 4 U = u + UV 4 u21s -{- u223 + U°

v =0," + VP 4 0y + vg® + V°

6. Analysis of the displacements in the transition regions. The equations for the
longitudinal components of the displacement field (4.9) and (5.1) cease to be valid in the
region w, near the straight line (4.5), and those for the transverse displacements (4.10),
(5.5), and (5.7) in the regions w, and w,, near the straight lines (4.7) and (4.8) (Fig. 4).
In the physical space, w, corresponds to the region of the penumbra for the longitudinal
components of displacement, w, is the region of the penumbra for the transverse compon-
ent, and o, is the transition region near the angle of total internal reflection. In the
V-plane, these regions correspond to Fok regions for the Bessel functions. We shall now

show to compute the displacement field in these regions.

In the region w,, the longitudinal displacements must be taken in the form of the sum
of two terms. One of these is the series (5.8) which converge rapidly everywhere, and the
other is the integral on EF in (2.6), for the computation of which the Hankel-Fok asymptotic
expression for H,V) (z) (3.2) will be used. Then

F
: Y2 9022 :
UP = iky a 2e2p? (t) — 1V (¢, r, 1) exp (i) di (6.1)
2 Vae (’> % P () Vit,a, &) wt)—q@)w(t)
where v =zt (y2)Pt = zp (1)
— (1 _gap) \" 0 — ¢ [268%98 () — 1)2 (Yp)"
Vo= 20 ) o =i B0 R

Py, = zp (¢) [Y/yn — O — arc cos (ap (t) / r) -+ arc cos ep (£)]+
+ V2 (8, r, 1) — yV2 (1, a, &)
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The quantity z,, which is defined in (5.3) is ~ cos /3, near the boundary of the shadow.

Therefore, in the region w,, the relation |z, |~ e~

is valid. In the illuminated region

for the longitudinal displacements, 3, 4, (Fig. 4), z127* & =1, and in the region of the

fall shadow, 1, 2 (Fig. 4), z;2'* > 1. In the penumbra, where [ z 2/ ~1, the integrals
(6.1) must be computed by a quadrature method. To do this, it is convenient to transform

the integration path into the broken line I" going from oo exp (2ni/ 3) to O along the

straight line arc ¢ = 2/;n and from 0 to o along the real axis and then to use the repre-
sentation of the function w on the complex ray arc ¢ = 27/3 [6]. The transformed integrals are
calculated from tables of the functions u (¢) and v (¢) and their derivatives which are

given in [6].

When z,x7 < — 1, the principal part of the integration in the integral of (6.1) will lie,
after the proper deformation of the path, near the large values of ¢t. For these ¢, the asympto-

tic formula
w () = (— &)~ exp [¥si (— )" + Yemi]

of [6] for the Airy function is applicable. Substituting these values into (6.1), we compute
the integrals by the stationary phase method and obtain a result which for angles of in-
cidence near @* coincides with the expressions for the ‘geometrical’ components of the

displacements.

When zlxl/’ > 1, the integrals of (6.1) can be calculated by means of the residues of
the integrand at the zeros of (3.4). We then obtain series which converge well in the region
of the shadow and which, when summed with the series (5.8), agree with the solution (5.1)
obtained earlier for the region of the shadow. In this way, the solution in the region of the
penumbra ties together, as it were, the solutions obtained for the illuminated region and

for the region of the shadow.

The expressions for the components of the transverse displacements cease to be valid
in the regions w, and w;. For the region w,, we take the solution (2.7), replacing the series
ip v, by their asymptotic representations — the series (5.9) and (5.10) ; to compute the sec-
ond integral along EF, the Hankel-Fok asymptotic expressions for Hv(l)(x) must be used.
Then

) )
vt=— g Sv H—'——”m W) B0 (ki) o 0 gy —
r) B @)

(6.2)

F
o raN A\ T2 imja p (t) w' (t) exp (ip,) dt
— ik (T) (7) :ﬁ,‘ae ;V ¢ rey[w @ —q@®w @]

where

Py = ky V2 (8, r, €) — 20V2 (¢, a, &) + ap (t) [Yon — & —
— arc cos eap () / r + 2arc cos ep (t)]
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In the transition region near the angle of total internal reflection | 2z, | ~ y—", the
secend integral in (6.2) must again be performed by numerical quadrature, after transform-

ing the path of integration into the path I".

In region 4 (Fig. 4) z;y”s ¢ — 1, and the principal part of the integration in the in-
tegral {6.2) for the method of stationary phase will lie near large negative values of ¢. The
integrals (6.2) then give a solution which coincides on some part of the region 4 with the
solution which was obtained before, (4.10). For the region z,yz/’ >1 and x<x+
(l/ax)l/"<ﬂ the value of ¢ will be large and positive. Therefore, the asymptotic expression

(6]

u(t) =t oxp (/gt"), v (t) = Yyt~ exp (— ¥yt~
should be used for w (2).

Moreover, the fact that poles of the integrand of (6.2) lie between the line of steepest
descent and the path of integration should be considered. Then, in some interval of inte-
gration ¢ > 0, lying outside the Fok region v ~ x, u° in (6.2) will consist of two parts;
the first, computed es an integral near a saddle point, coincides with the ‘geometric’
components of the transverse displacements ; the second is a series in residues at t
which, when summed with the series (5.9) results in the series (5.5) for "1: , this latter
series converging well for z,z"* > 1. Thus, Eq. (6.2) ties together the solutions in the
regions 3 and 4.

In the region w,, we once more take the solution in the form (2.7), replace the series
in v; by their asymptotic representations (5.9) and (5.10), and make use of the Hankel-Fok
asymptotic representation of Hv(l) (y) to compute the integral along EF. In the transforma~-
tion of the contour EF of the v/-plane into the corresponding contour I in the 7-plane, we
note that the poles z - (}/,z)"st, of the integrand will lie between the contours. Therefore,
the integral along EF is replaced by an integral along I" in the 7-plane plus a series in
the residues of the integrands at z - (!/,z)'*;. This last series when summed with (5.9)
again gives the series (5.5). Thus, in the region w,, the solution is represented by the
series (5.5) and (5.10) and integrals along the path I in the 7-plane. Just as in (6.1), these
integrals must be calculated by a numerical quadrature method. It is easy to show that for
zsyl/’ & — 1, i.e., in the illuminated region for the transverse displacements, the integrals

give a geometric displacement field which coincides with (4.10) in some interval.

For z;y/* > 1, i.e., in the region of full shadow, the integrals are computed by means
of residues of the integrands and result in a series which when summed with (5.10) coincides
with the series (5.7). Thus, the solutions in the regions w,, w,, and w, tie together the

solutions obtained earlier in Sections 4 and 5.

7. Diffraction of a longitudinal wave. With the same formulation as in Section 1, it is
possible to consider a longitudinal elastic wave with the potential

Po = exp (ik,r cos & — inf).
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incident on a cylinder. The complete solution of this problem on the surface of the cylinder
is given in [15] ; here we shall give expressions for the displacements in the diffracted

waves because we shall require them in Section 8:

(7.1
sy 2 \Ye exp [— ik, (arccosa/r 4+ Yam)] cosh,d
p__ a a k k
us® = N (ky, 1, a) (7) (1'— —,z—) 2 W (8,) (b — 47°) sin A,

k

3/a e —1 1 in A
24P = i (ky, 7, @) (_;) ( aa) Z exp [— il (arc cos a/r + /g m)] sin A, O

7 wi (2,) (B, — ¢,2%) sin A, &

k

and for the transverse components

(7.2)

3

4y® = —iP (i) /2 (1 g a_2>"/‘ 2 exp [iA, (arc cose — arc cosea / r — /3 m)] cf,s Ay ®
r r? x w (tk) (e — ‘112) sin A, n

4y’ =—P (%)./'(1 —e 2

s o exp [iky (arc cos e — arc cosea / r — /3 xt) sin A, 0
A

w (8) (8, — 9,?) sin A, %
P=P(,kyar =
ky (26 — 1) 5 (1 — e2) " exp Lik, (V7% — a%? —a V 1 —¢9)

The region of rapid convergence of (7.1) is determined by the condition
—arccos(a/r) — 8+ Yy >0

r

< i.e., the region of the geometric shadow (Fig. 7). For the series of

1.7’
(7.2), the region of rapid convergence lies to the right of the ray

v whose equation is r, = ge / cos (0" —_ 'ﬁ), ie.,
['@\ ’

1

arccose —arccos (ea/7r) — ¢ 4+ Y,n >0

C

Outside of their regions of convergence the longitudinal and
FIG. 7 transverse components of displacement are represented by the sum
of geometrical and diffraction terms. The latter are series analogous
to (7.1) and (7.2) replacing the factors sin )\ko and cos )\ke, in accordance with (2.5), by
— sin Ay (n — 9) exp (ih ) and cos Ax (m — &) exp (iAyn); these series converge
rapidly everywhere.

8. The geometrical theory of diffraction of plane elastic waves by an arbitrary convex
cylinder. We shall use Keller’s method in the geometric theory of diffraction, with some
modifications, in order to solve problems of the diffraction of elastic waves. We shall pose
the problem as follows: A harmonic wave, longitudinal or transverse, is incident on a
smooth, convex cylinder in a homogeneous elastic medium. It is required to find the dif-
fracted displacement field outside the diffracting body. In contrast to 11, 12], we shall
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consider that diffracted rays are produced not only by the initial longitudinal and trans-
verse rays which are tangent to the surface of the body, but also by the initial transverse
rays which are Icident at the angle of total internal reflection a . Moreover, a surface
longitudinal diffracted ray will emit, not only longitudinal diffracted rays, but transverse

diffracted rays also, these making an angle @™ with the normal to the surface of the body.

FIG. 8 FIG. 9

All these diffracted rays will correspond to the extended Fermat principle, i.e., they
contain geodesic arcs along the surface of the body and straight lines from the body to
the point P under consideration (Figs. 8 and 9). We shall characterize the diffracted field
w on each ray by the amplitude A, which is a vector for a vector field, and the phase 5.

In the case of an incident transverse wave, the diffracted field w, (P) at the point P
will be formed from the sum of the fields on rays of three types: a longitudinal and a
transverse diffracted ray emitted at the point P, (Fig. 8), and a transverse diffracted ray
of the head-wave type emitted at P ’. Let the initial ray at the point Qi be characterized by
the amplitude A¢(Q;) and the phase S(Qi)‘ The displacement field at the point P which is
associated with the three diffracted rays beginning at ¢, and Q’will be

wy (P) = WP (P) + wi* (P) + w,° (P) 8.1)

where WP and W* are the displacements on the longitudinal and transverse rays P,P and
Wl" that on the transverse ray P “P. It will be assumed that the direction associated with
the displacement amplitude remains constant along a straight ray and that its magnitude

is determined by the same construction as is given in [12] for a scalar field. Then

wP (P) = A, (Q) exp {ik,8, (Q') + ik, (5, + s} (s1)p. %

X %—‘Dk, »(Q') Dy, 5 (P,) exp {— cil % (0) dc} .

wy’ (P) = A, (Q) exp {ik, (8, (Q') + s, ihyoa} [p / (p + s9)15%x
« o, & (8.3)
% 2De.3 () Di, 2 (P') exp{—\ i (0) do}
k

0
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wy’ (P) = Ay (Qy) exp {ik, [8, (Qy) + s, + 651} (Sl)pl_l/’ X

9 (8.4)
x 21D 3 (Q) Dr. 3 (Py) exp{— (v, (o) do}
k Q

where 0; is a distance along a geodesic arc on the surface: 0, = Q'P,, ¢, = Q'P’,
03 = Q,P,, s;isa distance along a straight line: s, = P,P and s, = P P, p is the curv-
ature of the wave front, and D (Q‘-) are the diffraction coefficients at the point Q‘., which
are equal to ratios of the amplitudes on the various rays at this point. The superscript on
the coefficient ) denotes which type of ray, longitudinal (p) or transverse (s) is trans-
formed into another, the latter being denoted by the subscript. Thus, Dy, ; (Q;) is the
ratio of the amplitude of the transverse ray to the amplitude of the diffracted longitudinal
ray at the point Q‘., etc; y, denotes the decay exponent of a transverse surface ray as a
result of emission of transverse rays, and a and Bk are decay exponents of a longitudinal
surface ray as a consequence of emission of longitudinal and transverse diffracted rays.
The subscript & indicates that the field on the diffracted field on the surface diffracted
wave consists of a set of different frequencies. Each frequency is characterized by its
own diffraction coefficient and decay exponents, either a;, 'Bk' or y,.. On the basis of the
principle of reciprocity, it will be assumed that diffraction coefficients with identical

upper and lower scripts are the same functions of their variables.

Knowing the form of the body and the coordinates of the point P, one can always find
the direction of the displacement (Figs. 8 and 8); if the sign of the displacement is taken
incorrectly, this is taken into account when determining the corresponding diffraction co-
efficient by the sign of the coefficient.

In the case of a longitudinal wave incident on the body, a diffracted longitudinal
surface ray is formed at the point of tangency. This gives rise to two families of dif-
fracted longitudinal and transverse rays. The diffracted field at the point P (Fig. 9) will

equal

Wq (P) = wy" (P) + w3’ (P) @1

wy” = A,y (Qy) exp {ik, [8, (Qy) + 05 + sp} (sPp, ™ X

5 K (8.6)
x 1Dy 2(Q0) Dil (Py) exp{—\ o (0) do}
k 0
wy® = A4 (Qy) exp {ik, [6,(0Q,) + 0,] + ikz-gz}(?i';‘z‘)lz, X
X 31D (Q) Di (P') exp{— { Bi (0) do} .7
k 0

where o, is the geodesic arc between Q, and P * (Fig. 9).
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Further, following Keller, we shall consider that the diffraction coefficients D (Q‘.)
and the decay exponents depend to a first approximation on the character of the fields &,
and k, and the properties of the body at the point Qi (more precisely, on the radius of curv-
ature of the body at the point Q‘.). Therefore, the diffraction coefficients and the decay
exponents may be determined by solving the problem of diffraction of longitudinal and

transverse waves by any body of simple shape.

Thus, in order to solve the problem of diffraction of plane elastic waves by a cylindri-
cal body of arbitrary section, it will suffice to find the solution for the diffraction of plane
elastic waves by a circular cylinder of radius a with the corresponding boundary conditions
and to carry out the asymptotic expansion of the solution in 1/k, and 1/k,. Next, the asym-
ptotic expansion and the solution by Keller's method are compared and diffraction coef-
ficients and decay exponents are found as functions of k,, k;, a. With the shape of the
body known, the solution can then be constructed with the aid of the coefficients which

have been found.

We shall apply the preceding method to find the displacements in an elastic medium
when plane elastic waves are diffracted by a circular cylinder. We make the following
comment: since the cylinder has constant radius of curvature and the elastic medium is
homogeneous, the decay exponents are constant along a ray and depend only on k,, &,

and a.

Let us now examine the problem of the incidence of a transverse wave on a circular
cylinder. Three types of diffracted rays will arrive at a point P which is in the geometric
shadow: a longitudinal ray (8.2), a transverse one (8.4), and a transverse one of the head-
wave type (8.3). Besides the three rays which arrive at P from the top of the cylinder, it
is also necessary to consider the three rays from the bottom of the cylinder and all those

rays which go through the point P after having encircled the cylinder n times.

Summing up all the fields on these rays and taking account of the orientation of the

displacements, we find the field on the transverse rays at point P (Fig. 10)

. 3y 2 \-1 . —

u! (P) = — iy (£)" (1 = 55 ) e n VEE S (D2
k

. . (8.8)
,-; a\ . sin Oa (iks — 1)
X exp [— (—-2—- -} arc cos 7) (ikg — 7i) a] S0 (=1,
Here and in what follows, formulas are given only for the radial component u of the displace-~
ments in the diffracted field. In Figs. 10-14 the directions we have taken for the displace-
ments on the upper diffracted rays (P, P, P ‘P) and the lower ones (P,P, P “’P) are denoted
by arrows at the point P. The transverse rays which strike the cylinder at the angle a*

give rise to longitudinal and transverse diffracted rays.

The displacement component on the longitudinal rays (Fig. 11) are
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FIG. 10
uP (P) = — ik, (%):/. (1 _ %)'/. a-'r et (k.VyTa'-k,an_‘mZDk';Dk's
k
_— a RN sin ¥a (ki — ap) (8.9)
X exp [(arc 008 e arecos 3 2 ) (they — o) a] sin na (iky — ay)

and for the transverse displacements of the head-wave type (Fig. 12)

—g2)'fs ¥, — -
w' (P) = — tky _e(i_ngiﬁ (i) " gtk (V Psiai-2a Vite) X
— \r
(U —efat/r) (8.10)
. ki B
X 2y Dy 5 Dy Rex [(2 arc ¢os & — arc cos — —i) ik, — ]sw_l_").
2‘ 2 h,sEXP 7 )k — By e | By
By comparing the results obtained for the displacements (8.8) -(8.10) with the asymptotic
expressions for the region of the geometric shadow in the exact method (5.7) -(5.9), we can
obtain only products of the diffraction coefficients. This, however, is not sufficient. To
solve the problem for a body of arbitrary shape by Keller's method it is necessary to know
the values of these coefficients individually as functions of k,, k,, and the radius of curv-
ature of the body.

We shall therefore examine another case, that of incidence of a plane longitudinal
wave on the cylinder, with the same boundary conditions. We shall obtain the field at the
point P as the sum of fields on all the diffracted longitudinal rays (8.6) and transverse rays
(8.7) which pass through P.

The displacement components in the longitudinal diffracted waves are (Fig. 13)

Y, 2\Ye _ —
B R
k

. 8.11)
a TN . cos Oa (ikr — ap) (
xexp| — (are cos £ 5 (s — aw) e | R d = 0N
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FIG. 13 FIG. 14

The field for the transverse diffracted waves is found in a similar fashion (Fig. 14)

ug® = — kye (1 — ot)"+(1 — 2 )7 (L) el -0 VI X ®.12)

3
cos Ba (ik1 — B;)
Dy ED.Pex [( — e’i_..i) ik, — it L
Xg v.pDrs €Xp|(arccos e arc cos-_ 3 (iky — Br) a sina (T =B,
Comparing (8.11) and (8.12) with the asymptotic expressions of the exact solution for

the region of the geometric shadow, (7.1) and (7.2) and the analogous expressions for the

diffraction of a transverse wave, we obtain

e = Bi = iky — ihha™t = — ia~t (kya [ 2) ¢,
Ti = i}fg — 5}-11:0-1 = — g1 (kga / 2)1/371: (8.13)

where ¢, and 7; are the roots of Eqs. (3.4) and (3.5), and also five equations for four

diffraction coefficients. From these, we find

D, <8n )'/' je w8 ('k-gft)l” D, 7 (811 )'/‘ igin/8 (kla)'/'
ks =\ 7)) T e kyp =57 ———————— |—
ke w(ty) (T, — g2y 2\ 2 1 w () (L __qlz)‘/z a
v gk ez — 1 e /8 2\"
D= (3F) - = () (8.14)
- 8 ) et (1 — &2)" 2 (ty — r?)* \ Fna
DS (k,m?)“ 22— Pl < 2 )‘/.
kp = — - - -
7 8 8‘1(1"*82)“ (t, — @) kia

We note that the surface of the diffracting body is a caustic of the diffracted rays
(except the transverse diffracted rays of the head-wave type), and that the displacements
in the Keller method will, therefore, become infinite on the surface. In order to determine
the surface displacements, we turn to the asymptotic expression of the exact solution.
Near the surface as r » a we use the Hankel-Fok asymptotic formulas for the Hankel
functions Hl(,” (k,r) and HS) (k,r) and their derivatives instead of the Debye formulas.

Therefore, the expressions for displacements near and on the body which are obtained by
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the Keller method must be multiplied by the ratio of the Hankel-Fok asymptotic represent-

ation of the proper function to the Debye asymptotic expression.

In conclusion, the author would like to thank G.A. Skuridin and N.V. Zvolinskii for

valuable comment.
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